MeBio 数学テキスト

東進数学コンクール 2018年10月

―問題と解答―

第1章

問題

§ 1 問題

東京出版発行の「大学への数学」の裏表紙内側に、毎月「東進数学コンクール」が掲載されています。高校生向けの超難問ですが、数学的にも深い意味を持つものばかりで、出題者の能力に感心するばかりです。2018 年 10 月号の問題は次の通りでした。ほったらかしにしておくと完全に忘れてしまうので、メモを残すことにします。

東進の問題 1-1-1

[0, 1] で定義された連続な実数値関数 f が、(0, 1) で連続な導関数 f' をもち、f(0) = 0,f(1) = 1 を満たすとき.

$$\int_0^1 \{f(x)\}^2 dx + \int_0^1 \{f'(x)\}^2 dx$$

のとり得る最小値を求めよ.

MeBio (2018.10.2 7:22)

第 2 章

解答

§1 仮定を強めた場合の解

 $f(x) \in C^2[0, 1]$ を仮定しないと解きにくい. 以下ではそれを仮定して解いてみよう.

最小値を実現する関数を $f_0(x)$ とする. g(x) を, g(0)=g(1)=0 を満たす C^2 級の関数とすると、任意の実数 k に対して $f(x)=f_0(x)+kg(x)$ も f(0)=0, f(1)=1 を満たす C^2 級の関数であるから、最小性より

$$\int_0^1 \left\{ \left\{ f_0(x) + kg(x) \right\}^2 + \left\{ f_0'(x) + kg'(x) \right\}^2 \right\} dx \ge \int_0^1 \left\{ \left\{ f_0(x) \right\}^2 + \left\{ f_0'(x) \right\}^2 \right\} dx$$

が成り立つ. これを展開整理すると

$$2k \int_0^1 \left\{ f_0(x)g(x) + f_0'(x)g'(x) \right\} dx + k^2 \int_0^1 \left\{ \left\{ g(x) \right\}^2 + \left\{ g'(x) \right\}^2 \right\} dx \ge 0$$

任意の k に対してこれが成立するには $\int_0^1 \{f_0(x)g(x)+f_0'(x)g'(x)\}dx=0$ であることが必要十分である.ところがこれは次のように変形される.

$$\int_0^1 \{f_0(x)g(x) + f_0'(x)g'(x)\} dx$$

$$= \int_0^1 f_0(x)g(x)dx + [f_0'(x)g(x)]_0^1 - \int_0^1 f_0''(x)g(x)dx$$

$$= \int_0^1 \{f_0(x) - f_0''(x)\} g(x) dx$$

これが常に 0 になるには $f_0(x)-f_0''(x)=0$ でなければならない.この微分方程式の一般解は $f_0(x)=se^x+te^{-x}$ であるが, $f_0(0)=0$, $f_0(1)=1$ より $f_0(x)=\frac{e^x-e^{-x}}{e-e^{-1}}$ となる.このとき

$$\int_{0}^{1} \left\{ \{f_{0}(x)\}^{2} + \{f'_{0}(x)\}^{2} \right\} dx$$

$$= \frac{1}{(e - e^{-1})^{2}} \int_{0}^{1} \left\{ (e^{x} - e^{-x})^{2} + (e^{x} + e^{-x})^{2} \right\} dx$$

$$= \frac{1}{(e - e^{-1})^{2}} \int_{0}^{1} (2e^{2x} + 2e^{-2x}) dx$$

$$= \frac{1}{(e - e^{-1})^{2}} \left[e^{2x} - e^{-2x} \right]_{0}^{1} = \frac{e^{2} - e^{-2}}{(e - e^{-1})^{2}} = \frac{e + e^{-1}}{e - e^{-1}}$$

\S 2 C^1 の解

f''(x) の存在を仮定しない場合の最小値が,先ほどの結果よりも小さいとする.その場合の関数を $f_1(x)$ とする.任意の ε に対し,ある $f(x) \in C^2[0, 1]$ で,あらゆる $x \in [0, 1]$ に対し, $|f(x) - f_1(x)| < \varepsilon$, $|f'(x) - f'_1(x)| < \varepsilon$ を満たすものが存在する.(厳密には $\varepsilon - \delta$ 論法を使って,コンパクト集合 [0, 1] を有限個の開集合で覆い,f(x) の存在を示すことになるが,大変面倒である.)

従って $\int_0^1 \left\{ \{f(x)\}^2 + \{f'(x)\}^2 \right\} dx$ の値は $\int_0^1 \left\{ \{f_1(x)\}^2 + \{f_1'(x)\}^2 \right\} dx$ にいくらでも近づけることができる. これは矛盾.

こんな感じで証明になっているだろうか.