MeBio 数学テキスト

中学への算数

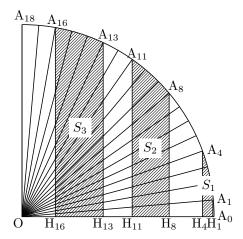
―問題と解答―

第1章

問題

§ 1 問題

問題 1-1-1 図のように半径 r の四半円の円周を 5° ずつに 18 等分し, $A_0\sim A_{18}$ と名前をつける. A_1 , A_4 , A_8 , A_{11} , A_{13} , A_{16} から OA_0 に下ろした垂線の足を H_1 , H_4 , H_8 , H_{11} , H_{13} , H_{16} とする.

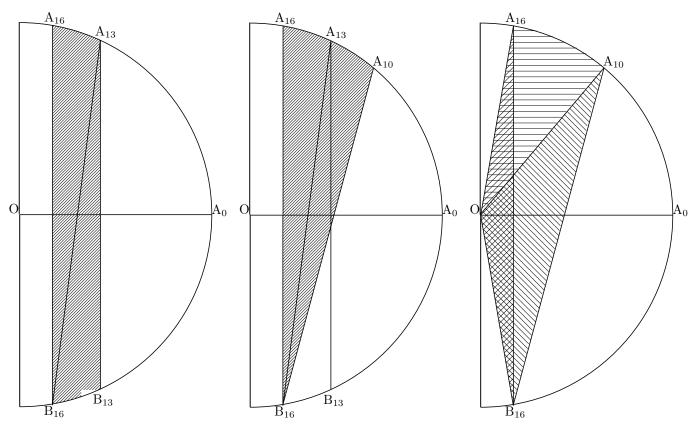


直線 A_4H_4 , H_4H_1 , H_1A_1 と 弧 A_1A_4 で囲まれた図形の面積を S_1 , 直線 $A_{11}H_{11}$, $H_{11}H_8$, H_8A_8 と 弧 A_8A_{11} で囲まれた図形の面積を S_2 , 直線 $A_{16}H_{16}$, $H_{16}H_{13}$, $H_{13}A_{13}$ と 弧 $A_{13}A_{16}$ で囲まれた図形の面積を S_3 とする. $S=S_1+S_2+S_3$ を(算数的に)求めよ.

第 2 章

解答

§ 1 解答



 OA_0 に関する A_{16} , A_{13} の対称点を B_{16} , B_{13} とする. 直線 $A_{16}B_{16}$, $A_{13}B_{13}$ と 弧 $A_{13}A_{16}$, $B_{13}B_{16}$ で囲まれる 部分の面積は $2S_3$ であるが,これは中央の図のように変形すると,直線 $A_{16}B_{16}$, $B_{16}A_{10}$ と 弧 $A_{10}A_{16}$ で囲まれる 部分の面積に等しい.それを右図のように考えると

$$2S_3 = (\overline{B} \otimes OA_{10}A_{16}) + \triangle OB_{16}A_{10} - \triangle OA_{10}A_{16}$$

となることがわかる. 中心角 θ の扇形の面積を $C(\theta)$, 頂角 θ の二等辺三角形の面積を $T(\theta)$ とすると

$$2S_3 = C(30^\circ) + T(130^\circ) - T(160^\circ)$$

ということになる. 同様にして

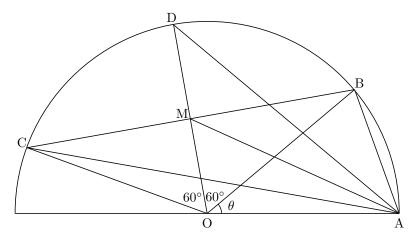
$$2S_1 = C(30^\circ) + T(10^\circ) - T(40^\circ)$$

$$2S_2 = C(30^\circ) + T(80^\circ) - T(110^\circ)$$

もわかる. ここで次の命題を示そう.

命題 2-1-1 $T(\theta) + T(\theta + 120^{\circ}) = T(\theta + 60^{\circ})$

証明 数学的には $T(\theta) = \frac{r^2}{2} \sin \theta$ だから $\sin \theta + \sin(\theta + 120^\circ) = 2\sin(\theta + 60^\circ) \cos 60^\circ = \sin(\theta + 60^\circ)$ より明らかなのだが、算数的には次のように考えればよい.



 $\angle AOB = \theta$, $\angle BOD = \angle DOC = 60^{\circ}$ とする. 図形的に考えて OBDC は菱形であり, BC の中点 M は OD の中点でもある.

 $\triangle \mathrm{OAB} = T(\theta),\ \triangle \mathrm{OAC} = T(\theta + 120^\circ)$ であるが、高さを考えると $\frac{\triangle \mathrm{OAB} + \triangle \mathrm{OAC}}{2} = \triangle \mathrm{OAM}$ であるから、 $\triangle \mathrm{OAB} + \triangle \mathrm{OAC} = 2\triangle \mathrm{OAM} = \triangle \mathrm{OAD}$ つまり $T(\theta) + T(\theta + 120^\circ) = T(\theta + 60^\circ)$ が示された.

この命題より $T(40^\circ)+T(160^\circ)=T(100^\circ),$ $T(10^\circ)+T(130^\circ)=T(70^\circ)$ であるが, $T(100^\circ)=T(80^\circ),$ $T(70^\circ)=T(110^\circ)$ も明らかなので,

$$2S_1 + 2S_2 + 2S_3$$

$$= 3C(30^\circ) + T(130^\circ) - T(160^\circ) + T(10^\circ) - T(40^\circ) + T(80^\circ) - T(110^\circ)$$

$$= 3C(30^\circ) - \{T(40^\circ) + T(160^\circ) - T(80^\circ)\} + \{T(10^\circ) + T(130^\circ) - T(110^\circ)\}$$

$$= 3C(90^\circ) = \frac{3}{4}\pi r^2$$

従って $S = \frac{3}{8}\pi r^2$ である.