links students ito uchii newsletters gallery English index index


Newton's Rules of Reasoning

Newton's view on induction is stated at the beginning of the Book Three of Principia. Page numbers in the brackets are to Motte & Cajori translation.


[398] Rules of Reasoning in Philosophy

Rule I

We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances.

To this purpose the philosophers say that Nature does nothing in vain, and more is in vain when less will serve; for Nature is p[leased with simplicity, and affects not the pomp of superfluous causes.

Rule II

Therefore to the same natural effects we must, as far as possible, assign the same causes.

As to respiration in a man and in a beast; the descent of stones in Europe and in America; the light of our culinary fire and of the sun; the reflection of light in the earth, and in the planets.

Rule III

The qualities of bodies, which admit neither intensification nor remission of degrees, and which are found to belong to all bodies within the reach of our experiments, are to be esteemed the universal qualities of all bodies whatsoever.

For since the qualities of bodies are only known to us by experiments, we are to hold for universal all such as universally agree with experiments; and such as are not liable to diminution can never be quite taken away. We are certainly not to relinquish the evidence of experiments for the sake of dreams and vain fictions of our own devising; nor are we to recede from the analogy of Nature, which is wont to be simple, and always consonant to [398/399] itself. We no other way know the extension of bodies than by our senses, nor do these reach it in all bodies; but because we perceive extension in all that are sensible, therefore we ascribe it universally to all others also. That all bodies are impenetrable, we gather not from reason, but from sensation. The bodies which we handle we find impenetrable, and thence conclude impenetrability to be an universal property of all bodies whatsoever. That all bodies are movable, and endowed with certain powers (which we call inertia) of persevering in their motion, or in their rest, we only infer from the like properties observed in the bodies which we have seen. The extension, hardness, impenetrability, mobility, and inertial of the whole, result from the extension, hardness, impenetrability, mobility, and inertial of the parts; and hence we conclude the least particles of all bodies to be also all extended, and hard and impenetrable, and movable, and endowed with their proper inertia. And this is the foundation of all philosophy. Moreover, that the divided but contiguous particles of bodies may be separated from one another, is matter of observation; and, in the particles that remain undivided, our minds are able to distinguish yet lesser parts, as is mathematically demonstrated. But whether the parts so distinguished and not yet divided, may, by the powers of Nature, be actually divided and separated from one another, we cannot certainly determine. Yet, had we the proof of but one experiment that any undivided particle, in breaking a hard and solid body, suffered a division, we might by virtue of this rule conclude that the undivided as well as the divided particles may be divided and actually separated to infinity.

Lastly, if it universally appears, by experiments and astronomical observations, that all bodies about the earth gravitate towards the earth, and that in proportion to the quantity of matter which they severally contain; that the moon likewise, according to the quantity of its matter, gravitates towards the earth; that, on the other hand, our sea gravitates towards the moon; and all the planets one towards another; and the comets in like manner towards the sun; we must, in consequence of this rule, universally allow that all bodies whatsoever are endowed with a principle of mutual gravitation. [399/400] For the argument from the appearances concludes with more force for the universal gravitation of all bodies than for their impenetrability; of which, among those in the celestial regions, we have no experiments, nor any manner of observation. Not that I affirm gravity to be essential to bodies: by their vis insita I mean nothing but their inertia. This is immutable. Their gravity is diminished as they recede from the earth.

Rule IV

In experimental philosophy we are to look upon propositions inferred by general induction from phenomena as accurately or very nearly true, notwithstanding any contrary hypotheses that may be imagined, till such time as other phenomena occur, by which they may either be made more accurate, or liable to exceptions.

This rule we must follow, that the arguments of induction may not be evaded by hypotheses.


The figure in "The System of the World", p. 551

which illustrates the action of centripetal forces


Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his System of the World, Translated by Andrew Motte and Florian Cajori, University of California Press, 1962.

Newton's original is in Latin.


Last modified February 17, 2000. (c) Soshichi Uchii

suchii@bun.kyoto-u.ac.jp